

ANNUAL WATER QUALITY REPORT

Reporting Year 2022

Presented By
Stoughton Water
Department

PWS ID#: 4285000

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2022. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users. Please remember that we are always available should you ever have any questions or concerns about your water.

Where Does My Water Come From?

Our system includes nine groundwater supply wells with pumping stations, a connection to the Massachusetts Water Resources Authority (MWRA) on Island Street, four water storage tanks, and approximately 151 miles of water mains. In addition, Stoughton maintains emergency pump stations to obtain water from the Towns of Canton and Brockton and two emergency interconnections to obtain water from the Towns of Easton and Sharon. About 97 percent of your drinking water is from Stoughton's own water resources, with the remaining 3 percent coming from the MWRA supply.

FOG (Fats, Oils, and Grease)

You may not be aware of it, but every time you pour fat, oil, or grease (FOG) down your sink (e.g., bacon grease), you are contributing to a costly problem in the sewer collection system. FOG coats the inner walls of the plumbing in your house as well as the walls of underground piping throughout the community. Over time, these greasy materials build up and form blockages in pipes, which can lead to wastewater backing up into houses, yards, streets, and sewer drains. These backups allow FOG to contaminate local waters, including drinking water. Exposure to untreated wastewater is a public health hazard. FOG discharged into septic systems and drain fields can also cause malfunctions, resulting in more frequent tank pump-outs and other expenses.

Communities spend billions of dollars every year to unplug or replace grease-blocked pipes, repair pump stations, and clean up costly and illegal wastewater spills. Here are some tips that you and your family can follow to help maintain a well-run system now and in the future:

NEVER:

Pour fats, oil, or grease down the house or storm drains.

Dispose of food scraps by flushing them.

Use the toilet as a wastebasket.

ALWAYS:

Scrape and collect fat, oil, and grease into a waste container, such as an empty coffee can, and dispose of it with your garbage.

Place food scraps in waste containers or garbage bags for disposal with solid wastes.

Place a wastebasket in each bathroom for solid wastes like disposable diapers, creams and lotions, and personal hygiene products, including nonbiodegradable wipes.

Important Health Information

Nitrate in drinking water at levels above 10 parts per million (ppm) is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask advice from your health care provider.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking

Water Hotline at (800) 426-4791 or online at: <http://water.epa.gov/drink/hotline>.

QUESTIONS?

Want to know more about the Stoughton water supply system or interested in participating in the decision-making process? Please contact Phil McNulty, P.E., Water and Sewer Superintendent, Stoughton Public Works Department, at (781) 344-2112, with any questions, comments, or concerns. We are located at 1748 Central Street, Stoughton.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the Department of Environmental Protection (DEP) and the U.S. Environmental Protection Agency (U.S. EPA) prescribe regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

What's a Cross-Connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air-conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in the drinking water line drops due to fairly routine occurrences (main breaks, fires, or heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (back-siphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer.

We also inspect and test backflow preventers to make sure that they provide maximum protection. For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or online at: www.epa.gov/safewater/lead.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule, and the water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES							
Substance (Unit of Measure)	Year Sampled	MCL [MRDL]	MCLG [MRDLG]	Amount Detected	Range Low-High	Violation	Typical Source
Barium (ppm)	2022	2	2	0.01 ¹	0.008–0.01 ¹	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
Combined Radium (pCi/L)	2022	5	0	0.49	0.49–0.49	No	Erosion of natural deposits
Fluoride (ppm)	2022	4	4	0.828 ¹	0.385–0.828 ¹	No	Water additive which promotes strong teeth
Haloacetic Acids [HAAs]–Stage 1 (ppb)	2022	60	NA	24.4	4.4–24.4 ²	No	By-product of drinking water disinfection
Nitrate (ppm)	2022	10	10	5.51	0.032–5.51 ³	No	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Perchlorate (ppb)	2022	2	NA	0.50	0.16–0.50	No	Inorganic chemicals used as oxidizers in solid propellants for rockets, missiles, fireworks, and explosives
PFAS6 (ppt)	2022	20	NA	25.4	4.4–25.4	Yes	Discharges and emissions from industrial and manufacturing sources associated with the production or use of these PFAS, including production of moisture- and oil-resistant coatings on fabrics and other materials. Additional sources include the use and disposal of products containing these PFAS, such as firefighting foams.
TTHMs [total trihalomethanes]–Stage 1 (ppb)	2022	80	NA	36.2	9.08–36.2 ⁴	No	By-product of drinking water disinfection

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

Substance (Unit of Measure)	Year Sampled	AL	MCLG	Amount Detected (90th %ile)	Sites Above AL/Total Sites		
					Violation	Typical Source	
Copper (ppm)	2022	1.3	1.3	0.90/1.17 ⁵	6/120 ⁵	No	Corrosion of household plumbing systems; erosion of natural deposits
Lead (ppb)	2022	15	0	4/5 ⁶	5/120 ⁶	No	Lead service lines; corrosion of household plumbing systems, including fittings and fixtures; erosion of natural deposits

SECONDARY SUBSTANCES

Substance (Unit of Measure)	Year Sampled	SMCL	MCLG	Amount Detected	Range Low-High	Violation	Typical Source
Aluminum (ppb)	2022	200	NA	0.13	ND–0.13	No	Erosion of natural deposits; residual from some surface water treatment processes
Chloride (ppm)	2022	250	NA	93.8	47.8–93.8	No	Runoff/leaching from natural deposits
Copper (ppm)	2022	1.0	NA	0.38	ND–0.38	No	Corrosion of household plumbing systems; erosion of natural deposits
Manganese (ppb)	2022	50	NA	24	ND–24	No	Leaching from natural deposits
Odor (TON)	2022	3	NA	6	4.6–6	No	Naturally occurring organic materials
pH (units)	2022	6.5–8.5	NA	7.2	6.6–7.2	No	Naturally occurring
Sulfate (ppm)	2022	250	NA	11.8	ND–11.8	No	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids [TDS] (ppm)	2022	500	NA	249	168–249	No	Runoff/leaching from natural deposits
Zinc (ppm)	2022	5	NA	0.01	ND–0.10	No	Runoff/leaching from natural deposits; industrial wastes

¹ MWRA results.

² MWRA range: 4.4 - 24.4 ppb Stoughton range: 11.7 - 19.1 ppb

³ MWRA range: 0.032 - 0.55 ppm Stoughton range: 0.27 - 5.51 ppm

⁴ MWRA range: 9.08 - 20.7 ppb Stoughton range: 20 - 36.2 ppb

⁵ Copper was sampled twice in 2022. The 90th percentile for May was 0.90 ppm, with two sites over the action level. In November the 90th percentile was 1.17 ppm, with four sites over the action level.

⁶ Lead was sampled twice in 2022. The 90th percentile for May was 4 ppb, with two sites over the action level. In November the 90th percentile was 5 ppb, with three sites over the action level.

What Are PFAS?

Per- and polyfluoroalkyl substances (PFAS) are a group of manufactured chemicals used worldwide since the 1950s to make fluoropolymer coatings and products that resist heat, oil, stains, grease, and water. During production and use, PFAS can migrate into the soil, water, and air. Most PFAS do not break down; they remain in the environment, ultimately finding their way into drinking water. Because of their widespread use and their persistence in the environment, PFAS are found all over the world at low levels. Some PFAS can build up in people and animals with repeated exposure over time.

The most commonly studied PFAS are perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). PFOA and PFOS have been phased out of production and use in the United States, but other countries may still manufacture and use them.

Some products that may contain PFAS include:

- Some grease-resistant paper, fast food containers/wrappers, microwave popcorn bags, pizza boxes
- Nonstick cookware
- Stain-resistant coatings used on carpets, upholstery, and other fabrics
- Water-resistant clothing
- Personal care products (shampoo, dental floss) and cosmetics (nail polish, eye makeup)
- Cleaning products
- Paints, varnishes, and sealants

Even though recent efforts to remove PFAS have reduced the likelihood of exposure, some products may still contain them. If you have questions or concerns about products you use in your home, contact the Consumer Product Safety Commission at (800) 638-2772. For a more detailed discussion on PFAS, please visit: <http://bit.ly/3Z5AMm8>.

Violation Information

During fourth quarter 2022, Muddy Pond Water Treatment Plant and Goddard Pond Water Station, two of the five sample locations that provide drinking water to customers in Stoughton, violated a newly promulgated drinking water standard for the sum of six per- and polyfluoroalkyl substances (PFAS6). We are working with our consulting engineers to design and install treatment to remove PFAS6 at the Muddy Pond Treatment Plant and have begun discussions about possible treatment options for the Goddard Pond Well.

Some people who drink water containing these PFAS in excess of the MCL may experience certain adverse effects. These could include effects on the liver, blood, immune system, thyroid, and fetal development. These PFAS may also elevate the risk of certain cancers.

Definitions

90th %ile: Out of every 10 homes sampled, 9 were at or below this level. This number is compared to the Action Level to determine lead and copper compliance.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

pCi/L (picocuries per liter): A measure of radioactivity.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

ppt (parts per trillion): One part substance per trillion parts water (or nanograms per liter).

SMCL (Secondary Maximum Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

TON (Threshold Odor Number): A measure of odor in water.

